Improved-Throughput Traction Microscopy Based on Fluorescence Micropattern for Manual Microscopy
نویسندگان
چکیده
منابع مشابه
Improved-Throughput Traction Microscopy Based on Fluorescence Micropattern for Manual Microscopy
Traction force microscopy (TFM) is a quantitative technique for measuring cellular traction force, which is important in understanding cellular mechanotransduction processes. Traditional TFM has a significant limitation in that it has a low measurement throughput, commonly one per TFM dish, due to a lack of cell position information. To obtain enough cellular traction force data, an onerous wor...
متن کاملHyperspectral fluorescence microscopy based on Compressive Sampling
The mathematical theory of compressed sensing (CS) asserts that one can acquire signals from measurements whose rate is much lower than the total bandwidth. Whereas the CS theory is now well developed, challenges concerning hardware implementations of CS-based acquisition devices—especially in optics—have only started being addressed. This paper presents an implementation of compressive sensing...
متن کاملFluorescence and fluorescence microscopy
The concept of specific cellular antigen staining by use of an immunofluorescent technique was introduced by AH COONS and co-workers about 60 years ago. Fluorescent probes are efficient tools and enable the detection of particular components in complex structures of organs including live cells. Under the condition of specific molecular interactions, fluorochrome labeled ligands allow the select...
متن کامل3D Viscoelastic traction force microscopy.
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, whi...
متن کاملHigh-resolution traction force microscopy.
Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0070122